
jFokus IoT, Stockholm! ! ! ! ! ! ! ! ! ! ! ! ! ! 3rd February, 2015

Aaron Ardiri!! ! ! ! ! ! ! ! Chief Technology Officer - Evothings AB

Feasibility of Security in Micro-Controllers

Overview

IoT Security!
✤ why is it such a hot topic?!
✤ why has it become an issue in the first place?!
✤ what is the feasibility on the Arduino platform!
✤ what is happening in the IoT developer ecosystem?!
✤ food for thought: are we approaching it correctly?

IoT Security 
why is it such a hot topic?

Hewlett Packard Report

HP’s Fortify division recently tested a selection of IoT
solutions currently available on the market by popular
manufacturers including TVs, webcams, thermostats,
power outlets, door locks and home control hubs.!
✤ 250 vulnerabilities found!
✤ 76% of devices used unencrypted network resources!
✤ 80% failed to use strong passwords, many unchanged!
✤ 60% failed to protect firmware downloads/integrity

Sweden - National Security

! ! ! ! ! ! ! ! ! ! ! ! ! 3rd November 2014!
http://www.dn.se/nyheter/sverige/it-expert-bristerna-ett-hot-mot-rikets-sakerhet/!

It was revealed a number of important public properties
in Sweden including but not limited to Police Stations,
Transit Stations, Data Centers and Space Center in Kiruna
are completely open on the Internet and hackable -
control of alarms, doors, heating, other sensitive systems!
✤ sites are password protected but have weak security

http://www.dn.se/nyheter/sverige/it-expert-bristerna-ett-hot-mot-rikets-sakerhet/

IoT Security 
why has it become such an issue?

Gartner Hype Cycle Special Report
http://www.gartner.com/newsroom/id/2819918

Internet of Things

http://www.gartner.com/newsroom/id/2819918

postscapes.com/internet-of-things-hardware

Explosion of micro-controllers

http://postscapes.com/internet-of-things-hardware

Products - what is happening

✤ companies making “land grab” in IoT space!
✤ focus is product-to-market, not deliver quality!
✤ a number of products are based on prototypes!
✤ failure to provide OTA and update mechanisms!

✤ SSL/TLS - implementations!
✤ many micro-controllers have limited CPU / RAM!
✤ existing libraries are not optimised for embedded

Standards War

Hyper/Cat

0-day exploits (security) in 2014

Heartbleed!
serious vulnerability in the popular  
OpenSSL cryptographic software library. !

ShellShock!
aka: Bashdoor group of bugs in the  
popular Bourne Again Shell (Bash).!

 
POODLE!
serious vulnerability in the popular  
OpenSSL cryptographic software library.

✤ What are the options for IoT product manufacturers?

Operating Systems

BareBones OS

or

A common mis-conception; it is more than Encryption

Security is not only encryption

http://www.securerf.com/security-is-not-encrypting-data/

Security

AuthenticationIntegrity

ConfidentialityNon-Repudiation

IoT Security
what is the feasibility on Arduino?

Public Key Cryptography

your public key

#1 provide your public key to sender #2 sender uses your public key to encrypt message

#4 use your private key to decrypt cyphertext#3 sender provides cyphertext to you

message cyphertext

cyphertext

cyphertext message

your private key

your public key

✤ encryption!
 c != me mod n!

✤ decryption!
 m = cd mod n!
!

! the source text is to converted to an integer form that is
then passed through the exponent modulus algorithm to
create a second integer that can then be converted into a
cyphertext string to be transmitted over the network.

RSA: Basic Overview

ALGORITHM KEY!
!
m != original message!
c! = cyphertext!
!
e! = public key exponent!
d! = private key exponent!
n! = modulus (primes multiplied)

✤ SSL/TLS - implementations!
✤ many micro-controllers have limited CPU / RAM!
✤ existing libraries are simply too large for embedded

SSL: Market offering

embedded versionRAM

ROM

32Kb flash!
 2Kb RAM

100Kb flash!
 20Kb RAM

✤ feasibility study, specific to Arduino!
✤ working prototype of end-to-end setup!

✤ encryption/decryption using RSA-1024

SSL: Evothings investigation

Secure
RAM

ROM
< 4Kb flash!
< 1Kb RAM32Kb flash!

 2Kb RAM

implementation of RSA encrypt/decrypt algorithms:!

✤ custom written - mixture of C and assembly (avr only)!
✤ implemented specifically for RSA algorithms!
✤ keys are defined as (n,e) and (n,d) raw bit streams!
✤ designed to be portable with a small code footprint!

✤ 128, 256, 512, 1024 and 2048 keys (if possible)!
✤ limited SRAM of micro controller restricts key sizes

RSA implementation on Arduino

 BigInt e, d, n, m, c;!
!
 // define our public(n,e), private(n,d) and message !
 BigInt_assignFromBuffer(&d, (unsigned char *)key_device_prv);!
 BigInt_assignFromBuffer(&e, (unsigned char *)key_device_pub);!
 BigInt_assignFromBuffer(&n, (unsigned char *)key_device_mod);!
 BigInt_assignFromBuffer(&m, (unsigned char *)rsa_message);!
 !
 // encrypt message ‘m’ into cypher text ‘c’!
 BigInt_exponent_with_modulus(&c, &m, &e, &n);!
!
 // decrypt cypher text ‘c’ into message ‘m’!
 BigInt_exponent_with_modulus(&m, &c, &d, &n);!

RSA implementation on Arduino

IoT Security
feasibility - results on the Arduino

✤ CPU!
✤ ATmega328!
✤ 16Mhz!

✤ 32Kb program mem!
✤ 2Kb SRAM!
Performance Results (ms) - compiled with 8bit, pure C

RSA: Arduino UNO

algorithm 128 bit 256 bit 512 bit 1024 bit 2048 bit

encrypt: public key 288 1070 4103 16160 N/A*

decrypt: private key 3155 22365 175452 1383240 N/A*
* insufficient SRAM to perform

✤ CPU!
✤ ATmega328!
✤ 16Mhz!

✤ 32Kb program mem!
✤ 2Kb SRAM!
Performance Results (ms) - compiled with 8bit, avr asm

RSA: Arduino UNO

algorithm 128 bit 256 bit 512 bit 1024 bit 2048 bit

encrypt: public key 178 609 2225 8504 N/A*

decrypt: private key 1951 12716 95079 727955 N/A*
* insufficient SRAM to perform

48%  
performance boost

✤ CPU!
✤ AT91SAMX8E!
✤ 84Mhz!

✤ 512Kb program mem!
✤ 96Kb SRAM!
Performance Results (ms) - compiled with 32bit, 100% C

RSA: Arduino Due

algorithm 128 bit 256 bit 512 bit 1024 bit 2048 bit

encrypt: public key 25 77 264 1032 4122

decrypt: private key 261 1586 11206 88216 701668

✤ CPU!
✤ ATmega32U4 and AR9331!
✤ 16Mhz and 400Mhz!

✤ 32Kb program mem!
✤ 2.5Kb SRAM!
Performance Results (ms) - compiled with 32bit, 100% C

RSA: Arduino Yún

algorithm 128 bit 256 bit 512 bit 1024 bit 2048 bit

encrypt: public key 329 355 512 707 N/A*

decrypt: private key 437 562 1681 10799 N/A*

* use Bridge Library to execute RSA algorithms on Linux CPU

* insufficient SRAM to perform
* the Bridge implementation has a 100-200ms fluctuation in results depending on key size

✤ CPU!
✤ Quark SoC X1000!
✤ 400Mhz!

✤ 256Kb program mem!
✤ 512Kb SRAM!
Performance Results (ms) - compiled with 32bit, 100% C

RSA: Intel Galileo

algorithm 128 bit 256 bit 512 bit 1024 bit 2048 bit

encrypt: public key 4 20 57 192 706

decrypt: private key 95 397 2310 16055 119499

✤ CPU!
✤ dual core Atom SoC and Quark!
✤ 500Mhz and 100Mhz!

✤ 10Mb program mem!
✤ 1Gb SRAM!
Performance Results (ms) - compiled with 32bit, 100% C

RSA: Intel Edison

algorithm 128 bit 256 bit 512 bit 1024 bit 2048 bit

encrypt: public key 3 7 23 76 273

decrypt: private key 30 150 976 6548 46579

empty sketch:!
Sketch uses 450 bytes (1%) of program storage space. !
Maximum is 32,256 bytes.!
Global variables use 9 bytes (0%) of dynamic memory, leaving 2,039
bytes for local variables. Maximum is 2,048 bytes.!
!
RSA 1024 with public key only!
Sketch uses 4,116 bytes (12%) of program storage space. !
Maximum is 32,256 bytes.!
Global variables use 981 bytes (47%) of dynamic memory, leaving 1,067
bytes for local variables. Maximum is 2,048 bytes.!
!
resulting code size:!
3,666 bytes of program storage space!
972 bytes of dynamic memory

RSA 1024: Resource Usage (avr)

~ 3.5Kb for code, < 1Kb for RAM

empty sketch:!
Sketch uses 10,492 bytes (2%) of program storage space. !
Maximum is 524,288 bytes.!
Global variables use 9 bytes (0%) of dynamic memory, leaving 98,295
bytes for local variables. Maximum is 98,304 bytes.!
!
RSA 1024 with public key only!
Sketch uses 12,836 bytes (2%) of program storage space. !
Maximum is 524,288 bytes.!
Global variables use 981 bytes (0%) of dynamic memory, leaving 97,323
bytes for local variables. Maximum is 98,304 bytes.!
!
resulting code size:!
1,454 bytes of program storage space!
972 bytes of dynamic memory

RSA 1024: Resource Usage (ARM)

~ 1.4Kb for code, < 1Kb for RAM

empty sketch:!
Sketch uses 55,375 bytes (21%) of program storage space. !
Maximum is 262,144 bytes.!
Global variables use 9 bytes (0%) of dynamic memory, leaving 524,279
bytes for local variables. Maximum is 524,288 bytes.!
!
RSA 1024 with public key only!
Sketch uses 63,805 bytes (24%) of program storage space. !
Maximum is 262,144 bytes.!
Global variables use 981 bytes (0%) of dynamic memory, leaving
523,307 bytes for local variables. Maximum is 524,288 bytes.!
!
resulting code size:!
8,430 bytes of program storage space!
972 bytes of dynamic memory

RSA 1024: Resource Usage (x86)

~ 8.2Kb for code, < 1Kb for RAM

Configuration Analysis

✤ Advantages!
✤ S_PUB can be dynamic between sessions!
✤ only S_PUB used for encryption, low CPU demands!

!

✤ Disadvantages!
✤ S_PUB is communicated over network!
✤ no good method to validate that the server the

device is talking to is authentic (no CA validation)

Configuration Analysis

✤ Advantages!
✤ S_PUB, D_PUB never communicated over network!
✤ D_PUB is stored on server, associated to UUID!

✤ only Arduino’s registered can communicate with server!
✤ can remove any “compromised” devices from server!

!

✤ Disadvantages!
✤ D_PRV is used to encryption on device = slower

Secure Random Number Generator

✤ Arduino devices provide at least one analog pin that can be used to
create secure random numbers critical for symmetric keys (AES).!

✤ 2-pass von Neumann algorithm to remove “bias” from analog feed!
✤ re-use the existing PRNG random(), seeding at random intervals!

!
int secureRandomByte()
{
 static int count = 0;
 static int next = (randomByte() >> 2) + 1; // max 64 iterations
 if ((count++ % next) == 0)
 { randomSeed(randomWord()); next = (randomByte() >> 2) + 1; }
 return random(256);
}

IoT Security
what is the happening the IoT ecosystem?

Arduino + Secure Wifi Shield

✤ WiFi shield with integrated WINC1500 processor!
!

✤ TLS provided using:!
✤ ECC-256 (eq to RSA-3072)!
✤ AES-128!
✤ SHA-256

mbed OS - ARM

✤ open source: code/framework designed for ARM CPU

libCommas - avr

https://saifeinc.com/news/?p=223 !
!

✤ open source: code/framework designed for avr!
✤ ECC (ECDSA) and SHA-2 algorithms!
✤ proprietary server for communication end-point

AVR crypto-lib - avr

http://www.das-labor.org/wiki/AVR-Crypto-Lib/en!
!

✤ open source: code/framework designed for avr!
✤ various block, stream cyphers and hash functions

IoT Security
are we approaching it the right way?

Security Foundations: Classic

Security in computing has been typically bound to the
security of the real-world - by defining elements such as
keys, trusted-zones (DMZ), firewalls et al.!

DMZ

Security Foundations: Biology

Researchers have considered following nature’s design
and look at security from with a biological mindset -
where devices would be open to infection and evolve.!
!

Immunological defence based on identification and
isolation of a threat with backup nodes to spawn off to
fulfil the function of compromised nodes.!
!

http://www.eetindia.co.in/ART_8800705403_1800001_NT_a11862e6.HTM

http://www.eetindia.co.in/ART_8800705403_1800001_NT_a11862e6.HTM

Importance of Diversity in Nature

http://evolution.berkeley.edu/evolibrary/article/agriculture_02

http://evolution.berkeley.edu/evolibrary/article/agriculture_02

How many IoT devices by 2020?

! Gartner:! 26 Billion! Cisco:! ! 50 Billion!
! Intel:! ! 200 Billion! IDC:! ! 220 Billion!

It’s time to act now and ensure Security exists within IoT

Evothings Studio

Questions

Contact Information

!

!

aaron.ardiri@evothings.com!

twitter: @ardiri!

!

www.evothings.com!

www.ardiri.com/blog

mailto:aaron.ardiri@evothings.com
http://www.evothings.com
http://www.ardiri.com/blog

